
Data Currency in
Replicated DHTs

Reza Akbarinia Esther Pacitti Patrick Valduriez

Presented by John Harris
CS 755, Fall 2013

Background

● P2P systems are great for scalability,
availability

● Early systems (Gnutella, KaaZa) relied on
query flooding
○ Many peers, loosely aware of each other

● More structured systems (CAN, Chord,
Pastry) employ DHTs
○ O(logn) query routing performance

Complications

● Churn introduces problems
○ Nodes arrive/depart unpredictably, data becomes

unavailable
○ Solution: Replicate data across many nodes to

ensure availability

● New Problem
○ Which peers have most recent version of data?

● By P2P definition, no centralized authority
○ How to define “most recent”?

Data Currency in
Replicated DHTs

Reza Akbarinia Esther Pacitti Patrick Valduriez

Presented by John Harris
CS 755, Fall 2013

How to find the “freshest” data...

… among many duplicate peers...
… without any central authority.

Proposed Solution
UMS + KTS

Update Management Service

Improves data availability through replication using set of
pairwise independent hash functions H

Each DHT can have unique H.

Notice: size of set H determines degree of replication (and
therefore data availability).

presp(k,h) -> resp(k,h) -> nresp(k,h)

ADHT provides efficient means of determining

Will be used during key/timestamp ‘handoff’

I.e. each (key, data) pair receives logical
timestamp and is distributed using each hash
function h in H to appropriate set of peer nodes

But how is this achieved?

The Crux of the Paper

Key-Based Timestamping

Distributing responsibility for generating
timestamps mirrors distributing responsibility for
storing data.

Important Assumption

“If rsp(k,hts) leaves or fails, the DHT detects the
absence (e.g. by frequently sending “ping”
messages from each peer to its neighbours). …
another peer automatically becomes
responsible for timestamping k.”

Generating Monotonicity

1) Local timestamp counter cp,k for key k at peer
p is incremented every timestamp request.

2) cp,k is initialized to the last value of cq,k where
q is the last peer to gave generated a
timestamp for k

But how is #2 achieved?

*Monotonicity only applies to timestamps generated for the same key.

Counter Initialization

Direct: When a peer leaves gracefully, it
transfers all counters to the next responsible
peer. Efficient, simple.

Indirect: If old peer fails unexpectedly, newly
responsible peer retrieves all replicas for k an
initializes counter to most recent timestamp.
Requires multiple lookups, not guaranteed
correct.

What are the odds?

Probability indirect method will find
the most recent replica

Number of replicating hash functions

Greater availability leads to greater probability of
successful indirect initialization, but never 100%
guaranteed

For that <1% likely error...

Recovery: Original responsible failed node returns,
contacts newly responsible node, performs direct counter
transfer. Current node double-checks, fixes own counters,
and reinserts any erroneous (key,data, timestamp) records.

Periodic Inspection: If a newly responsible node never
hears back from its predecessor, it periodically checks what
timestamps our already in the DHT records and updates its
internal counters if necessary.

Responsibility Loss (Un)Aware DHTs

● In RLA DHTs, key and timestamp responsibility is
transferred at handoffs
○ Extra efficient b/c new peers tend to be neighbours

● In an RLU DHT, timestamp consistency can be
achieved by forcing every peer to reacquire
responsibility for a timestamp each time it generates
one
○ I.e. go through the indirect initialization procedure

every time
○ It’s expensive but compensates for otherwise “silent”

handoffs

Performance Evaluation

Simulation Conditions

● Implemented using modified Chord DHT

● Baseline 64-node
cluster, scaled up
with 10,000 node
SimJava simulation

● Compared against
BRICKS project

Data Charts

Related Work (circa 2007)

● PGrid: concurrent updates -> inconsistency
● Freenet: absent peers are never updated
● CFS, Past, OceanStore: immutable data

only
● BRICKS: non-unique version numbers ->

conflicts

Related Work (circa 2010)
“Continuous Timestamping for Efficient Replication Management in DHTs”

● Same authors extends timestamp monotonicity property with continuous
(no gaps) property

● Improves efficiency and fault tolerance using “replica holder groups”
●

Questions/Discussion

Discussion/Questions

● What is a potential weakness of the timestamp
“recovery” and “periodic inspection” algorithms
proposed in the paper?

● Consider: If there’s only ever one peer responsible for
timestamping k at time t, this paper achieves “dynamic
centralized authority”

● Can you think of a scenario where churn would be a
good thing?

